/******************************************************************************* * Copyright (c) 2000, 2003 IBM Corporation and others. * All rights reserved. This program and the accompanying materials * are made available under the terms of the Common Public License v1.0 * which accompanies this distribution, and is available at * http://www.eclipse.org/legal/cpl-v10.html * * Contributors: * IBM Corporation - initial API and implementation *******************************************************************************/ package net.sourceforge.phpdt.internal.compiler.lookup; import net.sourceforge.phpdt.core.compiler.CharOperation; import net.sourceforge.phpdt.internal.compiler.ast.AbstractMethodDeclaration; import net.sourceforge.phpdt.internal.compiler.ast.Clinit; import net.sourceforge.phpdt.internal.compiler.ast.FieldDeclaration; import net.sourceforge.phpdt.internal.compiler.ast.TypeDeclaration; import net.sourceforge.phpdt.internal.compiler.ast.TypeReference; import net.sourceforge.phpdt.internal.compiler.impl.ReferenceContext; import net.sourceforge.phpdt.internal.compiler.problem.ProblemReporter; import net.sourceforge.phpdt.internal.compiler.util.HashtableOfObject; public class ClassScope extends Scope { public TypeDeclaration referenceContext; public ClassScope(Scope parent, TypeDeclaration context) { super(CLASS_SCOPE, parent); this.referenceContext = context; } void buildAnonymousTypeBinding(SourceTypeBinding enclosingType, ReferenceBinding supertype) { LocalTypeBinding anonymousType = buildLocalType(enclosingType, enclosingType.fPackage); SourceTypeBinding sourceType = referenceContext.binding; if (supertype.isInterface()) { sourceType.superclass = getJavaLangObject(); sourceType.superInterfaces = new ReferenceBinding[] { supertype }; } else { sourceType.superclass = supertype; sourceType.superInterfaces = TypeBinding.NoSuperInterfaces; } connectMemberTypes(); buildFieldsAndMethods(); anonymousType.faultInTypesForFieldsAndMethods(); sourceType.verifyMethods(environment().methodVerifier()); } private void buildFields() { if (referenceContext.fields == null) { referenceContext.binding.fields = NoFields; return; } // count the number of fields vs. initializers FieldDeclaration[] fields = referenceContext.fields; int size = fields.length; int count = 0; for (int i = 0; i < size; i++) if (fields[i].isField()) count++; // iterate the field declarations to create the bindings, lose all // duplicates FieldBinding[] fieldBindings = new FieldBinding[count]; HashtableOfObject knownFieldNames = new HashtableOfObject(count); boolean duplicate = false; count = 0; for (int i = 0; i < size; i++) { FieldDeclaration field = fields[i]; if (!field.isField()) { if (referenceContext.binding.isInterface()) problemReporter().interfaceCannotHaveInitializers( referenceContext.binding, field); } else { FieldBinding fieldBinding = new FieldBinding(field, null, referenceContext.binding); // field's type will be resolved when needed for top level types checkAndSetModifiersForField(fieldBinding, field); if (knownFieldNames.containsKey(field.name)) { duplicate = true; FieldBinding previousBinding = (FieldBinding) knownFieldNames .get(field.name); if (previousBinding != null) { for (int f = 0; f < i; f++) { FieldDeclaration previousField = fields[f]; if (previousField.binding == previousBinding) { problemReporter() .duplicateFieldInType( referenceContext.binding, previousField); previousField.binding = null; break; } } } knownFieldNames.put(field.name, null); // ensure that the // duplicate field // is found & // removed problemReporter().duplicateFieldInType( referenceContext.binding, field); field.binding = null; } else { knownFieldNames.put(field.name, fieldBinding); // remember that we have seen a field with this name if (fieldBinding != null) fieldBindings[count++] = fieldBinding; } } } // remove duplicate fields if (duplicate) { FieldBinding[] newFieldBindings = new FieldBinding[knownFieldNames .size() - 1]; // we know we'll be removing at least 1 duplicate name size = count; count = 0; for (int i = 0; i < size; i++) { FieldBinding fieldBinding = fieldBindings[i]; if (knownFieldNames.get(fieldBinding.name) != null) newFieldBindings[count++] = fieldBinding; } fieldBindings = newFieldBindings; } if (count != fieldBindings.length) System.arraycopy(fieldBindings, 0, fieldBindings = new FieldBinding[count], 0, count); for (int i = 0; i < count; i++) fieldBindings[i].id = i; referenceContext.binding.fields = fieldBindings; } void buildFieldsAndMethods() { buildFields(); buildMethods(); SourceTypeBinding sourceType = referenceContext.binding; if (sourceType.isMemberType() && !sourceType.isLocalType()) ((MemberTypeBinding) sourceType).checkSyntheticArgsAndFields(); ReferenceBinding[] memberTypes = sourceType.memberTypes; for (int i = 0, length = memberTypes.length; i < length; i++) ((SourceTypeBinding) memberTypes[i]).scope.buildFieldsAndMethods(); } private LocalTypeBinding buildLocalType(SourceTypeBinding enclosingType, PackageBinding packageBinding) { referenceContext.scope = this; referenceContext.staticInitializerScope = new MethodScope(this, referenceContext, true); referenceContext.initializerScope = new MethodScope(this, referenceContext, false); // build the binding or the local type LocalTypeBinding localType = new LocalTypeBinding(this, enclosingType); referenceContext.binding = localType; checkAndSetModifiers(); // Look at member types ReferenceBinding[] memberTypeBindings = NoMemberTypes; if (referenceContext.memberTypes != null) { int size = referenceContext.memberTypes.length; memberTypeBindings = new ReferenceBinding[size]; int count = 0; nextMember: for (int i = 0; i < size; i++) { TypeDeclaration memberContext = referenceContext.memberTypes[i]; if (memberContext.isInterface()) { problemReporter().nestedClassCannotDeclareInterface( memberContext); continue nextMember; } ReferenceBinding type = localType; // check that the member does not conflict with an enclosing // type do { if (CharOperation.equals(type.sourceName, memberContext.name)) { problemReporter().hidingEnclosingType(memberContext); continue nextMember; } type = type.enclosingType(); } while (type != null); // check the member type does not conflict with another sibling // member type for (int j = 0; j < i; j++) { if (CharOperation.equals( referenceContext.memberTypes[j].name, memberContext.name)) { problemReporter().duplicateNestedType(memberContext); continue nextMember; } } ClassScope memberScope = new ClassScope(this, referenceContext.memberTypes[i]); LocalTypeBinding memberBinding = memberScope.buildLocalType( localType, packageBinding); memberBinding.setAsMemberType(); memberTypeBindings[count++] = memberBinding; } if (count != size) System.arraycopy(memberTypeBindings, 0, memberTypeBindings = new ReferenceBinding[count], 0, count); } localType.memberTypes = memberTypeBindings; return localType; } void buildLocalTypeBinding(SourceTypeBinding enclosingType) { LocalTypeBinding localType = buildLocalType(enclosingType, enclosingType.fPackage); connectTypeHierarchy(); buildFieldsAndMethods(); localType.faultInTypesForFieldsAndMethods(); referenceContext.binding.verifyMethods(environment().methodVerifier()); } private void buildMethods() { if (referenceContext.methods == null) { referenceContext.binding.methods = NoMethods; return; } // iterate the method declarations to create the bindings AbstractMethodDeclaration[] methods = referenceContext.methods; int size = methods.length; int clinitIndex = -1; for (int i = 0; i < size; i++) { if (methods[i] instanceof Clinit) { clinitIndex = i; break; } } MethodBinding[] methodBindings = new MethodBinding[clinitIndex == -1 ? size : size - 1]; int count = 0; for (int i = 0; i < size; i++) { if (i != clinitIndex) { MethodScope scope = new MethodScope(this, methods[i], false); MethodBinding methodBinding = scope.createMethod(methods[i]); if (methodBinding != null) // is null if binding could not be // created methodBindings[count++] = methodBinding; } } if (count != methodBindings.length) System.arraycopy(methodBindings, 0, methodBindings = new MethodBinding[count], 0, count); referenceContext.binding.methods = methodBindings; referenceContext.binding.modifiers |= AccUnresolved; // until // methods() is // sent } SourceTypeBinding buildType(SourceTypeBinding enclosingType, PackageBinding packageBinding) { // provide the typeDeclaration with needed scopes referenceContext.scope = this; referenceContext.staticInitializerScope = new MethodScope(this, referenceContext, true); referenceContext.initializerScope = new MethodScope(this, referenceContext, false); if (enclosingType == null) { char[][] className = CharOperation.arrayConcat( packageBinding.compoundName, referenceContext.name); referenceContext.binding = new SourceTypeBinding(className, packageBinding, this); } else { char[][] className = CharOperation .deepCopy(enclosingType.compoundName); className[className.length - 1] = CharOperation .concat(className[className.length - 1], referenceContext.name, '$'); referenceContext.binding = new MemberTypeBinding(className, this, enclosingType); } SourceTypeBinding sourceType = referenceContext.binding; sourceType.fPackage.addType(sourceType); checkAndSetModifiers(); // Look at member types ReferenceBinding[] memberTypeBindings = NoMemberTypes; if (referenceContext.memberTypes != null) { int size = referenceContext.memberTypes.length; memberTypeBindings = new ReferenceBinding[size]; int count = 0; nextMember: for (int i = 0; i < size; i++) { TypeDeclaration memberContext = referenceContext.memberTypes[i]; if (memberContext.isInterface() && sourceType.isNestedType() && sourceType.isClass() && !sourceType.isStatic()) { problemReporter().nestedClassCannotDeclareInterface( memberContext); continue nextMember; } ReferenceBinding type = sourceType; // check that the member does not conflict with an enclosing // type do { if (CharOperation.equals(type.sourceName, memberContext.name)) { problemReporter().hidingEnclosingType(memberContext); continue nextMember; } type = type.enclosingType(); } while (type != null); // check that the member type does not conflict with another // sibling member type for (int j = 0; j < i; j++) { if (CharOperation.equals( referenceContext.memberTypes[j].name, memberContext.name)) { problemReporter().duplicateNestedType(memberContext); continue nextMember; } } ClassScope memberScope = new ClassScope(this, memberContext); memberTypeBindings[count++] = memberScope.buildType(sourceType, packageBinding); } if (count != size) System.arraycopy(memberTypeBindings, 0, memberTypeBindings = new ReferenceBinding[count], 0, count); } sourceType.memberTypes = memberTypeBindings; return sourceType; } private void checkAndSetModifiers() { SourceTypeBinding sourceType = referenceContext.binding; int modifiers = sourceType.modifiers; if ((modifiers & AccAlternateModifierProblem) != 0) problemReporter().duplicateModifierForType(sourceType); ReferenceBinding enclosingType = sourceType.enclosingType(); boolean isMemberType = sourceType.isMemberType(); if (isMemberType) { // checks for member types before local types to catch local members // if (enclosingType.isStrictfp()) // modifiers |= AccStrictfp; if (enclosingType.isDeprecated()) modifiers |= AccDeprecatedImplicitly; if (enclosingType.isInterface()) modifiers |= AccPublic; } else if (sourceType.isLocalType()) { if (sourceType.isAnonymousType()) modifiers |= AccFinal; ReferenceContext refContext = methodScope().referenceContext; if (refContext instanceof TypeDeclaration) { ReferenceBinding type = ((TypeDeclaration) refContext).binding; // if (type.isStrictfp()) // modifiers |= AccStrictfp; if (type.isDeprecated()) modifiers |= AccDeprecatedImplicitly; } else { MethodBinding method = ((AbstractMethodDeclaration) refContext).binding; if (method != null) { // if (method.isStrictfp()) // modifiers |= AccStrictfp; if (method.isDeprecated()) modifiers |= AccDeprecatedImplicitly; } } } // after this point, tests on the 16 bits reserved. int realModifiers = modifiers & AccJustFlag; if ((realModifiers & AccInterface) != 0) { // detect abnormal cases for interfaces if (isMemberType) { int unexpectedModifiers = ~(AccPublic | AccPrivate | AccProtected | AccStatic | AccAbstract | AccInterface);// | // AccStrictfp); if ((realModifiers & unexpectedModifiers) != 0) problemReporter().illegalModifierForMemberInterface( sourceType); /* * } else if (sourceType.isLocalType()) { //interfaces cannot be * defined inside a method int unexpectedModifiers = * ~(AccAbstract | AccInterface | AccStrictfp); if * ((realModifiers & unexpectedModifiers) != 0) * problemReporter().illegalModifierForLocalInterface(sourceType); */ } else { int unexpectedModifiers = ~(AccPublic | AccAbstract | AccInterface);// | // AccStrictfp); if ((realModifiers & unexpectedModifiers) != 0) problemReporter().illegalModifierForInterface(sourceType); } modifiers |= AccAbstract; } else { // detect abnormal cases for types if (isMemberType) { // includes member types defined inside local // types int unexpectedModifiers = ~(AccPublic | AccPrivate | AccProtected | AccStatic | AccAbstract | AccFinal);// | // AccStrictfp); if ((realModifiers & unexpectedModifiers) != 0) problemReporter().illegalModifierForMemberClass(sourceType); } else if (sourceType.isLocalType()) { int unexpectedModifiers = ~(AccAbstract | AccFinal);// | // AccStrictfp); if ((realModifiers & unexpectedModifiers) != 0) problemReporter().illegalModifierForLocalClass(sourceType); } else { int unexpectedModifiers = ~(AccPublic | AccAbstract | AccFinal);// | // AccStrictfp); if ((realModifiers & unexpectedModifiers) != 0) problemReporter().illegalModifierForClass(sourceType); } // check that Final and Abstract are not set together if ((realModifiers & (AccFinal | AccAbstract)) == (AccFinal | AccAbstract)) problemReporter() .illegalModifierCombinationFinalAbstractForClass( sourceType); } if (isMemberType) { // test visibility modifiers inconsistency, isolate the accessors // bits if (enclosingType.isInterface()) { if ((realModifiers & (AccProtected | AccPrivate)) != 0) { problemReporter() .illegalVisibilityModifierForInterfaceMemberType( sourceType); // need to keep the less restrictive if ((realModifiers & AccProtected) != 0) modifiers ^= AccProtected; if ((realModifiers & AccPrivate) != 0) modifiers ^= AccPrivate; } } else { int accessorBits = realModifiers & (AccPublic | AccProtected | AccPrivate); if ((accessorBits & (accessorBits - 1)) > 1) { problemReporter() .illegalVisibilityModifierCombinationForMemberType( sourceType); // need to keep the less restrictive if ((accessorBits & AccPublic) != 0) { if ((accessorBits & AccProtected) != 0) modifiers ^= AccProtected; if ((accessorBits & AccPrivate) != 0) modifiers ^= AccPrivate; } if ((accessorBits & AccProtected) != 0) if ((accessorBits & AccPrivate) != 0) modifiers ^= AccPrivate; } } // static modifier test if ((realModifiers & AccStatic) == 0) { if (enclosingType.isInterface()) modifiers |= AccStatic; } else { if (!enclosingType.isStatic()) // error the enclosing type of a static field must be static // or a top-level type problemReporter().illegalStaticModifierForMemberType( sourceType); } } sourceType.modifiers = modifiers; } /* * This method checks the modifiers of a field. * * 9.3 & 8.3 Need to integrate the check for the final modifiers for nested * types * * Note : A scope is accessible by : fieldBinding.declaringClass.scope */ private void checkAndSetModifiersForField(FieldBinding fieldBinding, FieldDeclaration fieldDecl) { int modifiers = fieldBinding.modifiers; if ((modifiers & AccAlternateModifierProblem) != 0) problemReporter().duplicateModifierForField( fieldBinding.declaringClass, fieldDecl); if (fieldBinding.declaringClass.isInterface()) { int expectedValue = AccPublic | AccStatic | AccFinal; // set the modifiers modifiers |= expectedValue; // and then check that they are the only ones if ((modifiers & AccJustFlag) != expectedValue) problemReporter().illegalModifierForInterfaceField( fieldBinding.declaringClass, fieldDecl); fieldBinding.modifiers = modifiers; return; } // after this point, tests on the 16 bits reserved. int realModifiers = modifiers & AccJustFlag; int unexpectedModifiers = ~(AccPublic | AccPrivate | AccProtected | AccFinal | AccStatic);// | AccTransient | AccVolatile); if ((realModifiers & unexpectedModifiers) != 0) problemReporter().illegalModifierForField( fieldBinding.declaringClass, fieldDecl); int accessorBits = realModifiers & (AccPublic | AccProtected | AccPrivate); if ((accessorBits & (accessorBits - 1)) > 1) { problemReporter().illegalVisibilityModifierCombinationForField( fieldBinding.declaringClass, fieldDecl); // need to keep the less restrictive if ((accessorBits & AccPublic) != 0) { if ((accessorBits & AccProtected) != 0) modifiers ^= AccProtected; if ((accessorBits & AccPrivate) != 0) modifiers ^= AccPrivate; } if ((accessorBits & AccProtected) != 0) if ((accessorBits & AccPrivate) != 0) modifiers ^= AccPrivate; } // if ((realModifiers & (AccFinal | AccVolatile)) == (AccFinal | // AccVolatile)) // problemReporter().illegalModifierCombinationFinalVolatileForField( // fieldBinding.declaringClass, // fieldDecl); if (fieldDecl.initialization == null && (modifiers & AccFinal) != 0) { modifiers |= AccBlankFinal; } fieldBinding.modifiers = modifiers; } private void checkForInheritedMemberTypes(SourceTypeBinding sourceType) { // search up the hierarchy of the sourceType to see if any superType // defines a member type // when no member types are defined, tag the sourceType & each superType // with the HasNoMemberTypes bit ReferenceBinding currentType = sourceType; ReferenceBinding[][] interfacesToVisit = null; int lastPosition = -1; do { if ((currentType.tagBits & HasNoMemberTypes) != 0) break; // already know it has no inherited member types, can // stop looking up if (currentType.memberTypes() != NoMemberTypes) return; // has member types ReferenceBinding[] itsInterfaces = currentType.superInterfaces(); if (itsInterfaces != NoSuperInterfaces) { if (interfacesToVisit == null) interfacesToVisit = new ReferenceBinding[5][]; if (++lastPosition == interfacesToVisit.length) System .arraycopy( interfacesToVisit, 0, interfacesToVisit = new ReferenceBinding[lastPosition * 2][], 0, lastPosition); interfacesToVisit[lastPosition] = itsInterfaces; } } while ((currentType = currentType.superclass()) != null); boolean hasMembers = false; if (interfacesToVisit != null) { done: for (int i = 0; i <= lastPosition; i++) { ReferenceBinding[] interfaces = interfacesToVisit[i]; for (int j = 0, length = interfaces.length; j < length; j++) { ReferenceBinding anInterface = interfaces[j]; if ((anInterface.tagBits & InterfaceVisited) == 0) { // if // interface // as // not // already // been // visited anInterface.tagBits |= InterfaceVisited; if ((anInterface.tagBits & HasNoMemberTypes) != 0) continue; // already know it has no inherited // member types if (anInterface.memberTypes() != NoMemberTypes) { hasMembers = true; break done; } ReferenceBinding[] itsInterfaces = anInterface .superInterfaces(); if (itsInterfaces != NoSuperInterfaces) { if (++lastPosition == interfacesToVisit.length) System .arraycopy( interfacesToVisit, 0, interfacesToVisit = new ReferenceBinding[lastPosition * 2][], 0, lastPosition); interfacesToVisit[lastPosition] = itsInterfaces; } } } } for (int i = 0; i <= lastPosition; i++) { ReferenceBinding[] interfaces = interfacesToVisit[i]; for (int j = 0, length = interfaces.length; j < length; j++) { interfaces[j].tagBits &= ~InterfaceVisited; if (!hasMembers) interfaces[j].tagBits |= HasNoMemberTypes; } } } if (!hasMembers) { currentType = sourceType; do { currentType.tagBits |= HasNoMemberTypes; } while ((currentType = currentType.superclass()) != null); } } private void connectMemberTypes() { SourceTypeBinding sourceType = referenceContext.binding; if (sourceType.memberTypes != NoMemberTypes) for (int i = 0, size = sourceType.memberTypes.length; i < size; i++) ((SourceTypeBinding) sourceType.memberTypes[i]).scope .connectTypeHierarchy(); } /* * Our current belief based on available JCK tests is: inherited member * types are visible as a potential superclass. inherited interfaces are not * visible when defining a superinterface. * * Error recovery story: ensure the superclass is set to java.lang.Object if * a problem is detected resolving the superclass. * * Answer false if an error was reported against the sourceType. */ private boolean connectSuperclass() { SourceTypeBinding sourceType = referenceContext.binding; if (isJavaLangObject(sourceType)) { // handle the case of redefining // java.lang.Object up front sourceType.superclass = null; sourceType.superInterfaces = NoSuperInterfaces; if (referenceContext.superclass != null || referenceContext.superInterfaces != null) problemReporter().objectCannotHaveSuperTypes(sourceType); return true; // do not propagate Object's hierarchy problems down // to every subtype } if (referenceContext.superclass == null) { sourceType.superclass = getJavaLangObject(); return !detectCycle(sourceType, sourceType.superclass, null); } ReferenceBinding superclass = findSupertype(referenceContext.superclass); if (superclass != null) { // is null if a cycle was detected cycle if (!superclass.isValidBinding()) { problemReporter().invalidSuperclass(sourceType, referenceContext.superclass, superclass); } else if (superclass.isInterface()) { problemReporter().superclassMustBeAClass(sourceType, referenceContext.superclass, superclass); } else if (superclass.isFinal()) { problemReporter().classExtendFinalClass(sourceType, referenceContext.superclass, superclass); } else { // only want to reach here when no errors are reported referenceContext.superclass.resolvedType = superclass; sourceType.superclass = superclass; return true; } } sourceType.tagBits |= HierarchyHasProblems; sourceType.superclass = getJavaLangObject(); if ((sourceType.superclass.tagBits & BeginHierarchyCheck) == 0) detectCycle(sourceType, sourceType.superclass, null); return false; // reported some error against the source type } /* * Our current belief based on available JCK 1.3 tests is: inherited member * types are visible as a potential superclass. inherited interfaces are * visible when defining a superinterface. * * Error recovery story: ensure the superinterfaces contain only valid * visible interfaces. * * Answer false if an error was reported against the sourceType. */ private boolean connectSuperInterfaces() { SourceTypeBinding sourceType = referenceContext.binding; sourceType.superInterfaces = NoSuperInterfaces; if (referenceContext.superInterfaces == null) return true; if (isJavaLangObject(sourceType)) // already handled the case of // redefining java.lang.Object return true; boolean noProblems = true; int length = referenceContext.superInterfaces.length; ReferenceBinding[] interfaceBindings = new ReferenceBinding[length]; int count = 0; nextInterface: for (int i = 0; i < length; i++) { ReferenceBinding superInterface = findSupertype(referenceContext.superInterfaces[i]); if (superInterface == null) { // detected cycle noProblems = false; continue nextInterface; } if (!superInterface.isValidBinding()) { problemReporter().invalidSuperinterface(sourceType, referenceContext.superInterfaces[i], superInterface); sourceType.tagBits |= HierarchyHasProblems; noProblems = false; continue nextInterface; } // Check for a duplicate interface once the name is resolved, // otherwise we may be confused (ie : a.b.I and c.d.I) for (int k = 0; k < count; k++) { if (interfaceBindings[k] == superInterface) { // should this be treated as a warning? problemReporter().duplicateSuperinterface(sourceType, referenceContext, superInterface); continue nextInterface; } } if (superInterface.isClass()) { problemReporter().superinterfaceMustBeAnInterface(sourceType, referenceContext, superInterface); sourceType.tagBits |= HierarchyHasProblems; noProblems = false; continue nextInterface; } referenceContext.superInterfaces[i].resolvedType = superInterface; // only want to reach here when no errors are reported interfaceBindings[count++] = superInterface; } // hold onto all correctly resolved superinterfaces if (count > 0) { if (count != length) System.arraycopy(interfaceBindings, 0, interfaceBindings = new ReferenceBinding[count], 0, count); sourceType.superInterfaces = interfaceBindings; } return noProblems; } void connectTypeHierarchy() { SourceTypeBinding sourceType = referenceContext.binding; if ((sourceType.tagBits & BeginHierarchyCheck) == 0) { boolean noProblems = true; sourceType.tagBits |= BeginHierarchyCheck; if (sourceType.isClass()) noProblems &= connectSuperclass(); noProblems &= connectSuperInterfaces(); sourceType.tagBits |= EndHierarchyCheck; if (noProblems && sourceType.isHierarchyInconsistent()) problemReporter().hierarchyHasProblems(sourceType); } connectMemberTypes(); checkForInheritedMemberTypes(sourceType); } private void connectTypeHierarchyWithoutMembers() { // must ensure the imports are resolved if (parent instanceof CompilationUnitScope) { // if (((CompilationUnitScope) parent).imports == null) // ((CompilationUnitScope) parent).checkAndSetImports(); } else if (parent instanceof ClassScope) { // ensure that the enclosing type has already been checked ((ClassScope) parent).connectTypeHierarchyWithoutMembers(); } // double check that the hierarchy search has not already begun... SourceTypeBinding sourceType = referenceContext.binding; if ((sourceType.tagBits & BeginHierarchyCheck) != 0) return; boolean noProblems = true; sourceType.tagBits |= BeginHierarchyCheck; if (sourceType.isClass()) noProblems &= connectSuperclass(); noProblems &= connectSuperInterfaces(); sourceType.tagBits |= EndHierarchyCheck; if (noProblems && sourceType.isHierarchyInconsistent()) problemReporter().hierarchyHasProblems(sourceType); } // Answer whether a cycle was found between the sourceType & the superType private boolean detectCycle(SourceTypeBinding sourceType, ReferenceBinding superType, TypeReference reference) { if (sourceType == superType) { problemReporter().hierarchyCircularity(sourceType, superType, reference); sourceType.tagBits |= HierarchyHasProblems; return true; } if (superType.isBinaryBinding()) { // force its superclass & superinterfaces to be found... 2 // possibilities exist - the source type is included in the // hierarchy of: // - a binary type... this case MUST be caught & reported here // - another source type... this case is reported against the other // source type boolean hasCycle = false; if (superType.superclass() != null) { if (sourceType == superType.superclass()) { problemReporter().hierarchyCircularity(sourceType, superType, reference); sourceType.tagBits |= HierarchyHasProblems; superType.tagBits |= HierarchyHasProblems; return true; } hasCycle |= detectCycle(sourceType, superType.superclass(), reference); if ((superType.superclass().tagBits & HierarchyHasProblems) != 0) { sourceType.tagBits |= HierarchyHasProblems; superType.tagBits |= HierarchyHasProblems; // propagate // down the // hierarchy } } ReferenceBinding[] itsInterfaces = superType.superInterfaces(); if (itsInterfaces != NoSuperInterfaces) { for (int i = 0, length = itsInterfaces.length; i < length; i++) { ReferenceBinding anInterface = itsInterfaces[i]; if (sourceType == anInterface) { problemReporter().hierarchyCircularity(sourceType, superType, reference); sourceType.tagBits |= HierarchyHasProblems; superType.tagBits |= HierarchyHasProblems; return true; } hasCycle |= detectCycle(sourceType, anInterface, reference); if ((anInterface.tagBits & HierarchyHasProblems) != 0) { sourceType.tagBits |= HierarchyHasProblems; superType.tagBits |= HierarchyHasProblems; } } } return hasCycle; } if ((superType.tagBits & EndHierarchyCheck) == 0 && (superType.tagBits & BeginHierarchyCheck) != 0) { problemReporter().hierarchyCircularity(sourceType, superType, reference); sourceType.tagBits |= HierarchyHasProblems; superType.tagBits |= HierarchyHasProblems; return true; } if ((superType.tagBits & BeginHierarchyCheck) == 0) // ensure if this is a source superclass that it has already been // checked ((SourceTypeBinding) superType).scope .connectTypeHierarchyWithoutMembers(); if ((superType.tagBits & HierarchyHasProblems) != 0) sourceType.tagBits |= HierarchyHasProblems; return false; } private ReferenceBinding findSupertype(TypeReference typeReference) { typeReference.aboutToResolve(this); // allows us to trap completion & // selection nodes char[][] compoundName = typeReference.getTypeName(); compilationUnitScope().recordQualifiedReference(compoundName); SourceTypeBinding sourceType = referenceContext.binding; int size = compoundName.length; int n = 1; ReferenceBinding superType; // resolve the first name of the compoundName if (CharOperation.equals(compoundName[0], sourceType.sourceName)) { superType = sourceType; // match against the sourceType even though nested members cannot be // supertypes } else { Binding typeOrPackage = parent.getTypeOrPackage(compoundName[0], TYPE | PACKAGE); if (typeOrPackage == null || !typeOrPackage.isValidBinding()) return new ProblemReferenceBinding(compoundName[0], typeOrPackage == null ? NotFound : typeOrPackage .problemId()); boolean checkVisibility = false; for (; n < size; n++) { if (!(typeOrPackage instanceof PackageBinding)) break; PackageBinding packageBinding = (PackageBinding) typeOrPackage; typeOrPackage = packageBinding .getTypeOrPackage(compoundName[n]); if (typeOrPackage == null || !typeOrPackage.isValidBinding()) return new ProblemReferenceBinding(CharOperation.subarray( compoundName, 0, n + 1), typeOrPackage == null ? NotFound : typeOrPackage .problemId()); checkVisibility = true; } // convert to a ReferenceBinding if (typeOrPackage instanceof PackageBinding) // error, the // compoundName is a // packageName return new ProblemReferenceBinding(CharOperation.subarray( compoundName, 0, n), NotFound); superType = (ReferenceBinding) typeOrPackage; compilationUnitScope().recordTypeReference(superType); // to record // supertypes if (checkVisibility && n == size) { // if we're finished and know // the final supertype then // check visibility if (!superType.canBeSeenBy(sourceType.fPackage)) // its a toplevel type so just check package access return new ProblemReferenceBinding(CharOperation.subarray( compoundName, 0, n), superType, NotVisible); } } // at this point we know we have a type but we have to look for cycles while (true) { // must detect cycles & force connection up the hierarchy... also // handle cycles with binary types. // must be guaranteed that the superType knows its entire hierarchy if (detectCycle(sourceType, superType, typeReference)) return null; // cycle error was already reported if (n >= size) break; // retrieve the next member type char[] typeName = compoundName[n++]; superType = findMemberType(typeName, superType); if (superType == null) return new ProblemReferenceBinding(CharOperation.subarray( compoundName, 0, n), NotFound); if (!superType.isValidBinding()) { superType.compoundName = CharOperation.subarray(compoundName, 0, n); return superType; } } return superType; } /* * Answer the problem reporter to use for raising new problems. * * Note that as a side-effect, this updates the current reference context * (unit, type or method) in case the problem handler decides it is * necessary to abort. */ public ProblemReporter problemReporter() { MethodScope outerMethodScope; if ((outerMethodScope = outerMostMethodScope()) == null) { ProblemReporter problemReporter = referenceCompilationUnit().problemReporter; problemReporter.referenceContext = referenceContext; return problemReporter; } else { return outerMethodScope.problemReporter(); } } /* * Answer the reference type of this scope. It is the nearest enclosing type * of this scope. */ public TypeDeclaration referenceType() { return referenceContext; } public String toString() { if (referenceContext != null) return "--- Class Scope ---\n\n" //$NON-NLS-1$ + referenceContext.binding.toString(); else return "--- Class Scope ---\n\n Binding not initialized"; //$NON-NLS-1$ } }